
Journal of Computational Physics 228 (2009) 5933–5960
Contents lists available at ScienceDirect

Journal of Computational Physics

journal homepage: www.elsevier .com/locate / jcp
Stability analysis of implicit time discretizations
for the Compton-scattering Fokker–Planck equation

Jeffery D. Densmore a,*, James S. Warsa a, Robert B. Lowrie a, Jim E. Morel b

a Computational Physics and Methods Group, Los Alamos National Laboratory, P.O. Box 1663, MS D409, Los Alamos, NM 87545, USA
b Department of Nuclear Engineering, Texas A&M University, 3133 TAMU, College Station, TX 77843, USA

a r t i c l e i n f o
Article history:
Received 23 January 2009
Received in revised form 1 May 2009
Accepted 4 May 2009
Available online 10 May 2009

Keywords:
Radiative transfer
Compton scattering
Fokker–Planck approximation
Kompaneets’ equation
Stability analysis
0021-9991/$ - see front matter Published by Elsevie
doi:10.1016/j.jcp.2009.05.003

* Corresponding author. Tel.: +1 505 665 9198.
E-mail addresses: jdd@lanl.gov (J.D. Densmore), w
a b s t r a c t

The Fokker–Planck equation is a widely used approximation for modeling the Compton
scattering of photons in high energy density applications. In this paper, we perform a sta-
bility analysis of three implicit time discretizations for the Compton-Scattering Fokker–
Planck equation. Specifically, we examine (i) a Semi-Implicit (SI) scheme that employs
backward-Euler differencing but evaluates temperature-dependent coefficients at their
beginning-of-time-step values, (ii) a Fully Implicit (FI) discretization that instead evaluates
temperature-dependent coefficients at their end-of-time-step values, and (iii) a Linearized
Implicit (LI) scheme, which is developed by linearizing the temperature dependence of the
FI discretization within each time step. Our stability analysis shows that the FI and LI
schemes are unconditionally stable and cannot generate oscillatory solutions regardless
of time-step size, whereas the SI discretization can suffer from instabilities and nonphys-
ical oscillations for sufficiently large time steps. With the results of this analysis, we pres-
ent time-step limits for the SI scheme that prevent undesirable behavior. We test the
validity of our stability analysis and time-step limits with a set of numerical examples.

Published by Elsevier Inc.
1. Introduction

An important aspect of radiative transfer in high energy density applications is the scattering of photons by free electrons,
known as Compton scattering [1]. In this process, the change in frequency of a scattered photon results in an exchange of
energy between the photon and target electron and energy coupling between radiation and matter. The differential cross
section and corresponding integral equation that model Compton scattering are complicated and often simplified by a
Fokker–Planck approximation [2–5]. The resulting time and frequency-dependent partial differential equation, also known
as Kompaneets’ equation, is valid when the photon frequency and material temperature are small with respect to the electron
rest mass.

The Fokker–Planck equation is typically solved by discretizing in time and frequency using a finite difference scheme
[6,7]. However, this equation has coefficients that are functions of the material temperature. Thus, when the effects of radi-
ation-matter energy coupling are included, the material temperature can vary, and one must additionally approximate these
temperature-dependent coefficients.

In this paper, we perform a stability analysis of three implicit time discretizations for the Compton-scattering Fokker–
Planck equation [8,9]. These schemes all employ backward-Euler differencing but differ in their treatment of tempera-
ture-dependent coefficients. In the Semi-Implicit (SI) discretization, temperature-dependent coefficients are evaluated at
their beginning-of-time-step values. In contrast, the Fully Implicit (FI) scheme evaluates temperature-dependent coefficients
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using their end-of-time-step values. We also examine a Linearized Implicit (LI) discretization, which is developed by linear-
izing the temperature dependence of the FI scheme within each time step.

The analysis of each time discretization begins by linearizing the corresponding discrete Fokker–Planck equation about an
equilibrium solution such that the resulting linearized equation describes perturbations about this equilibrium. Next, we
determine the eigenvalues of this linearized equation, quantities that can predict the behavior of solutions generated by
the time discretization as a function of time-step size and other physical parameters. For example, if there are eigenvalues
greater than unity in magnitude, then solutions can grow without bound and the time discretization is considered unstable.
In addition, if there are negative eigenvalues, then solutions can nonphysically oscillate. This approach is similar to von
Neumann analysis [10], except the eigenfunctions in our case are not simple exponentials. Instead, we use expansions based
on the eigenfunctions of a nondimensional Fokker–Planck equation [2,11], which are combinations of exponentials, polyno-
mials, and confluent hypergeometric functions [12]. Our methodology also differs from von Neumann analysis in that it is
semi-discrete; we only examine the effects of temporal discretization and thus leave the frequency variable continuous.

Our stability analysis will show that the FI and LI schemes are unconditionally stable and cannot generate oscillatory solu-
tions regardless of time-step size, whereas the SI discretization can suffer from instabilities and nonphysical oscillations for
sufficiently large time steps. We then use the results of this analysis to develop two time-step limits for the SI scheme. The first
time-step limit prevents eigenvalues greater than unity in magnitude and the accompanying unstable solution, while the sec-
ond time-step limit guarantees that all eigenvalues are positive and less than unity and thus avoids both instabilities and non-
physical oscillations. This second time-step limit is more restrictive but simpler and easier to implement than the first.

Although the Fokker–Planck equation we examine in this paper is an approximate model of Compton scattering that only con-
siders time and frequency dependence, our analysis is also relevant to more complicated radiative-transfer problems with other
physics such as photon streaming, absorption, and emission. For example, Compton scattering is often included in radiative-
transfer simulations through the Fokker–Planck approximation by operator splitting [13,14]. In this technique, each time step
proceeds by first performing a radiative-transfer calculation without Compton scattering, then accounting for Compton scatter-
ing by solving a Fokker–Planck equation. Thus, our stability analysis directly applies to the second step of this operator split if one
of the time discretizations discussed in this paper is employed. Our methodology may also provide insight into more accurate
schemes for modeling Compton scattering that do not rely on the Fokker–Planck approximation. Examples of these techniques
include evaluating the Compton-scattering differential cross section numerically [15] and simulating the photon–electron col-
lision kinematics via Monte Carlo [16]. The temperature dependence of these higher fidelity methods must also be approximated
in realistic calculations, and thus our stability analysis can provide a framework for studying these techniques, as well.

We begin the remainder of this paper by reviewing the Fokker–Planck equation for Compton scattering and discussing the
SI, FI, and LI discretizations. Next, we demonstrate our linearization procedure on the undiscretized Fokker–Planck equation.
We then perform a stability analysis of each time discretization. With these results, we develop time-step limits for the SI
scheme. Next, we present a set of numerical examples that test the validity of our stability analysis and time-step limits. We
conclude with a brief discussion.

2. The Fokker–Planck equation

The Fokker–Planck equation for Compton scattering is [2–5]
1
rc

@E
@t
¼ MðTÞE; ð1Þ
where the Fokker–Planck operator is defined by
MðTÞE ¼ m
@

@m
m

kT
mc2

@E
@m
þ hm

mc2 � 3
kT

mc2

� �
E

� �
: ð2Þ
Here, m is the photon frequency, t is the temporal variable, E(m, t) is the spectral radiation energy density, T(t) is the material
temperature, c is the speed of light, k is Boltzmann’s constant, h is Planck’s constant, and mc2 is the electron rest mass in
energy units. In addition, r is the Thomson opacity, a quantity that is independent of photon frequency and material tem-
perature but directly proportional to the electron density. Eq. (1) is also known as Kompaneets’ equation. However, this
expression is slightly different from the usual form of Kompaneets’ equation because we have neglected induced scattering.
Inclusion of this physical effect would make the right side of Eq. (2) a nonlinear function of E.

Along with Eq. (1), we also specify a total energy equation that accounts for radiation-matter energy coupling,
dU
dt
þ d

dt

Z 1

0
Edm ¼ 0: ð3Þ
In this expression, U(T) is the material energy density and is related to the material temperature through
dU
dT
¼ Cv ; ð4Þ
where Cv (T) is the heat capacity. Because the total radiation energy density is simply the spectral radiation energy density
integrated over frequency, Eq. (3) is a statement that the total (i.e., radiation plus material) energy is constant.
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The Fokker–Planck equation has the important property that it conserves photons. This attribute is desirable because
Compton scattering, the physical process that the Fokker–Planck equation models, neither creates nor destroys photons.
To demonstrate this photon-conservation property, we first note that the photon density is defined by
1 If w
NðtÞ ¼
Z 1

0

1
hm

Eðm; tÞdm: ð5Þ
Then, multiplying Eq. (1) by rc/hm, integrating the resulting expression over frequency, and applying Eq. (5) yields
dN
dt
¼ rc

Z 1

0

1
hm

MðTÞEdm: ð6Þ
In addition, we use the fact that Eq. (2) satisfies
Z 1
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¼ 0: ð7Þ
Here, we have employed the boundary conditions that the spectral radiation energy density and its frequency derivative
vanish as frequency approaches zero and infinity. Substituting Eq. (7) into Eq. (6) shows that the photon density is constant,
and thus the Fokker–Planck equation conserves photons.

Another characteristic of the Fokker–Planck equation is that its equilibrium solution is a Wien distribution1:
Wðm; T;NÞ ¼ hN
2

hm
kT

� �3

e�hm=kT : ð8Þ
When we evaluate Eq. (5) using Eq. (8), we see that the Wien distribution is normalized to preserve the correct photon
density,
Z 1

0

1
hm

Wðm; T;NÞdm ¼ N: ð9Þ
Also, integrating Eq. (8) over frequency yields the total radiation energy density corresponding to a Wien distribution,
Z 1

0
Wðm; T;NÞdm ¼ 3kTN: ð10Þ
We can define a radiation heat capacity in a manner similar to Eq. (4) by taking the temperature derivative of Eq. (10),
Cr ¼
d

dT

Z 1

0
Wðm; T;NÞdm ¼ 3kN: ð11Þ
To demonstrate that the Wien distribution is indeed an equilibrium solution of the Fokker–Planck equation, we observe that
a direct substitution of Eq. (8) into Eq. (2) gives
MðTÞWðm; T;NÞ ¼ 0: ð12Þ
Then, when the spectral radiation energy density is described by Eq. (8), Eq. (12) shows that the right side of Eq. (1) vanishes,
and thus a Wien distribution is an equilibrium solution of the Fokker–Planck equation. Note that Eq. (12) holds for any value
of T. Integrating Eq. (3) over time reveals that the correct equilibrium material temperature, Teq, satisfies
UðTeqÞ þ
Z 1

0
Wðm; Teq;NÞdm ¼ U½Tð0Þ� þ

Z 1

0
Eðm;0Þdm: ð13Þ
Here, T(0) and E(m,0) are the initial material temperature and spectral radiation energy density, respectively, and we have
integrated out to a late enough time such that the material temperature and spectral radiation energy density are at equi-
librium. We can simplify Eq. (13) with Eq. (10) to write
UðTeqÞ þ 3kTeqN ¼ U½Tð0Þ� þ
Z 1

0
Eðm; 0Þdm: ð14Þ
This equation and Eq. (4) form a (possibly nonlinear) expression for Teq.

3. Time discretizations

To solve the Fokker–Planck equation using the SI discretization, we first prescribe a temporal grid 0 = t0 < t1 < t2 < � � �.
Next, we apply backward-Euler differencing to Eq. (1) but evaluate the material temperature at its explicit value. The result-
ing SI scheme is given by
e had included induced scattering in Eq. (2), the equilibrium solution would instead be a Bose–Einstein distribution [3–5].
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Enþ1 � En

rcDtn
¼ MðTnÞEnþ1: ð15Þ
Also, the corresponding discrete version of Eq. (3) is
UðTnþ1Þ þ
Z 1

0
Enþ1 dm ¼ UðTnÞ þ

Z 1

0
En dm: ð16Þ
In Eqs. (15) and (16), the subscript n denotes quantities evaluated at time tn, and Dtn = tn+1 � tn is the time-step size. Discret-
izing Eq. (15) in frequency yields a tridiagonal system of equations for En+1 that can be solved with a straightforward matrix
inversion. (An example frequency discretization is discussed in Appendix A.) After calculating En+1, one can update the mate-
rial energy density using Eq. (16), then determine Tn+1 with Eq. (4). In this manner, the SI scheme requires a single tridiagonal
matrix inversion each time step. For a constant material temperature, Eq. (15) is fully implicit, a fact that may lead one to
naively assume that the SI discretization is unconditionally stable. However, we will see later that the inclusion of radiation-
matter energy coupling through Eq. (16) and the accompanying variation in material temperature can cause the SI scheme to
generate unstable and oscillatory solutions.

The FI discretization is similar to the SI scheme except that the material temperature on the right side of Eq. (15) is eval-
uated implicitly instead of explicitly,
Enþ1 � En

rcDtn
¼ MðTnþ1ÞEnþ1: ð17Þ
Applying a frequency discretization transforms Eqs. (4), (16), and (17) into a nonlinear system of equations for En+1 and Tn+1.
This system must be solved iteratively, with each iteration requiring a tridiagonal matrix inversion. Thus, employing the FI
scheme necessitates multiple tridiagonal matrix inversions each time step.

The LI discretization is developed by linearizing the temperature dependence of Eq. (17) within each time step. First, we
approximate the right side of Eq. (17) using a linearization about Tn and En,
MðTnþ1ÞEnþ1 � MðTnÞEn þ ðTnþ1 � TnÞ
@M
@T

En þMðTnÞðEnþ1 � EnÞ: ð18Þ
This approximation is the same as that employed in the first iteration of a Newton’s method solution to Eq. (17) [17]. Next,
we expand U(Tn+1) in a Taylor series about Tn,
UðTnþ1Þ � UðTnÞ þ ðTnþ1 � TnÞ
@U
@T

����
Tn

� UðTnÞ þ Cv;nðTnþ1 � TnÞ; ð19Þ
where we have made use of Eq. (4). Combining Eqs. (16)–(19) yields the LI scheme,
Enþ1 � En

rcDtn
¼ MðTnÞEnþ1 �

1
Cv;n

Z 1

0
ðEnþ1 � EnÞdm

� �
@M
@T

En: ð20Þ
Only two tridiagonal matrix inversions are needed to solve Eq. (20) for En+1. To see this fact, we first define u(m) and v(m) as
solutions to
½1� rcDtnMðTnÞ�u ¼ En; ð21Þ

and
½1� rcDtnMðTnÞ�v ¼
@M
@T

En: ð22Þ
Discretizing Eqs. (21) and (22) in frequency results in two tridiagonal systems of equations, one each for u and v. The right
side of Eq. (22) is calculated by taking the temperature derivative of the discretized Fokker–Planck operator and forming the
appropriate matrix–vector product. We then express En+1 as a linear combination of u and v,
Enþ1 ¼ uþ gv : ð23Þ

Evaluating Eq. (20) with Eqs. (21)–(23) shows that g is given by
g ¼
R1

0 ðEn � uÞdm
Cv;n

rcDtn
þ
Z 1

0
v dm

: ð24Þ
After calculating En+1 by solving Eqs. (21) and (22) and employing Eqs. (23) and (24), one can update the material energy
density using Eq. (16), then determine Tn+1 with Eq. (4), just as in the SI scheme. In contrast to the SI discretization, however,
the LI scheme requires two tridiagonal matrix inversions each time step.

4. A linearized Fokker–Planck equation

We now linearize the undiscretized Fokker–Planck equation about an equilibrium solution such that the resulting line-
arized equation describes the behavior of small perturbations about this equilibrium. We also present several properties of
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this linearized Fokker–Planck equation that are analogous to those of its original nonlinear counterpart. In the next section,
we will use this linearization process as part of a stability analysis of the time discretizations described above. We begin by
expressing the material temperature and spectral radiation energy density as
TðtÞ ¼ Teq þ dTðtÞ; ð25Þ

and
Eðm; tÞ ¼Wðm; Teq;NÞ þ dEðm; tÞ: ð26Þ

Here, dT and dE are (ideally small) perturbations in the material temperature and spectral radiation energy density, respec-
tively, about their equilibrium values, and Teq is again the equilibrium material temperature. When we substitute Eqs. (25)
and (26) into Eqs. (1) and (2), ignore terms of order O(dTdE), and drop the subscript on Teq (T now refers to the equilibrium
material temperature), we have
1
rc

@

@t
dE ¼ MðTÞW þMðTÞdEþ m

@

@m
m

kdT
mc2

@W
@m
� 3

kdT
mc2 W

� �
: ð27Þ
Using Eq. (8) allows us to simplify the last term on the right side of Eq. (27),
m
@

@m
m

kdT
mc2

@W
@m
� 3

kdT
mc2 W

� �
¼ hN

2
kdT
mc2

hm
kT

� �5

� 4
hm
kT

� �4
" #

e�hm=kT : ð28Þ
Then, evaluating Eq. (27) with Eqs. (12) and (28) shows the linearized Fokker–Planck equation to be
1
rc

@

@t
dE ¼ MðTÞdEþ dTF; ð29Þ
where
Fðm; T;NÞ ¼ k
mc2

hN
2

hm
kT

� �5

� 4
hm
kT

� �4
" #

e�hm=kT : ð30Þ
Eq. (29) is of the same form as Eq. (1), except there is now a source term on the right side that is proportional to the material-
temperature perturbation.

We can also develop a linearized total energy equation. Substituting Eqs. (25) and (26) into Eq. (3) and again dropping the
subscript on Teq yields
d
dt

UðT þ dTÞ þ d
dt

Z 1

0
dEdm ¼ 0: ð31Þ
In a manner similar to Eq. (19), we expand U(T + dT) in Taylor series about T and employ Eq. (4) to write
UðT þ dTÞ ¼ UðTÞ þ dT
dU
dT
þ O dT2

� �
� UðTÞ þ CvðTÞdT: ð32Þ
When we combine Eqs. (31) and (32), we see that the linearized total energy equation is
CvðTÞ
d
dt

dT þ d
dt

Z 1

0
dEdm ¼ 0: ð33Þ
This expression has the interpretation that the total energy perturbation is constant in a linear sense [i.e., if we represent the
perturbation in the material energy density as Cv (T)dT]. In general, however, Eq. (33) does not rigorously conserve energy
because we have approximated the temperature dependence of the material energy density using Eq. (32).

One property of the linearized Fokker–Planck equation is that it conserves the perturbation in photon number, just as Eq.
(1) conserves photons. To demonstrate this attribute, we first define the photon-density perturbation as
dNðtÞ ¼
Z 1

0

1
hm

dEðm; tÞdm: ð34Þ
[Note that Eq. (34) is analogous to Eq. (5).] Then, multiplying Eq. (29) by rc/hm, integrating the resulting expression over fre-
quency, and applying Eq. (34) gives
d
dt

dN ¼ rc
Z 1

0

1
hm

MðTÞdEdmþ rcdT
Z 1

0

1
hm

F dm: ð35Þ
When we evaluate Eq. (7) with dE instead of E, we see
Z 1

0

1
hm

MðTÞdEdm ¼ 1
h

Z 1

0

@

@m
m

kT
mc2

@

@m
dEþ hm

mc2 � 3
kT

mc2

� �
dE

� �
dm

¼ 0; ð36Þ
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where in this case we have assumed that the perturbation in the spectral radiation energy density and its frequency deriv-
ative vanish as frequency approaches zero and infinity. In addition, we use the fact that Eq. (30) satisfies
Z 1

0

1
hm

F dm ¼ k
mc2

N
2

h
kT

Z 1

0

hm
kT

� �4

� 4
hm
kT

� �3
" #

e�hm=kT dm

¼ 0: ð37Þ
Eqs. (35)–(37) show that the photon-density perturbation is constant, and thus the linearized Fokker–Planck equation con-
serves the perturbation in photon number. Because the second term on the right side of Eq. (35) vanishes via Eq. (37), we
conclude that the source term in Eq. (29) is not a net source of photons; it simply redistributes photons with respect to fre-
quency to increase or decrease radiation energy.

We can determine an equilibrium solution of the linearized Fokker–Planck equation by considering a Wien distribution at
a perturbed temperature T + dT and a perturbed photon density N + dN. Expanding this expression with a Taylor series about
T and N results in
Wðm; T þ dT;N þ dNÞ ¼Wðm; T;NÞ þ dT
@W
@T
þ dN

@W
@N
þ O dT2

� �
þ OðdTdNÞ; ð38Þ
or
Wðm; T þ dT;N þ dNÞ �Wðm; T;NÞ þ dT
T

Vðm; T;NÞ þ dN
N

Wðm; T;NÞ: ð39Þ
Here, we have made use of Eq. (8) to write
@

@N
Wðm; T;NÞ ¼ 1

N
Wðm; T;NÞ; ð40Þ
and to define
Vðm; T;NÞ ¼ T
@

@T
Wðm; T;NÞ

¼ hN
2

hm
kT

� �4

� 3
hm
kT

� �3
" #

e�hm=kT : ð41Þ
Examining Eqs. (26) and (39) leads us to postulate that the equilibrium solution of the linearized Fokker–Planck equation is
of the form
dWðm; dT; dNÞ ¼Wðm; T þ dT;N þ dNÞ �Wðm; T;NÞ

¼ dT
T

Vðm; T;NÞ þ dN
N

Wðm; T;NÞ; ð42Þ
where we have suppressed the dependence on T and N on the left side of this equation as these quantities are constant.
Substituting Eq. (41) into Eq. (2) and comparing the results to Eq. (30) reveals
MðTÞVðm; T;NÞ ¼ �TFðm; T;NÞ: ð43Þ

Then, when dE is described by Eq. (42), Eqs. (12) and (43) show that the right side of Eq. (29) vanishes. Thus, dW is an equi-
librium solution of the linearized Fokker–Planck equation.

In contrast to the Wien distribution given by Eq. (8), Eq. (42) consists of a linear combination of two independent func-
tions. We note that Eq. (41) satisfies
Z 1

0

1
hm

Vðm; T;NÞdm ¼ 0; ð44Þ
and
 Z 1

0
Vðm; T;NÞdm ¼ 3kTN: ð45Þ
Eqs. (34) and (44) imply that there is no net photon-density perturbation associated with the V portion of dW. Evaluating Eq.
(34) with Eq. (42) and applying Eqs. (9) and (44) yields
Z 1

0

1
hm

dWðm; dT; dNÞdm ¼ dN: ð46Þ
Thus, dW preserves the correct perturbation in photon density, a quantity that is completely represented by the W portion of
this expression. We can also calculate the perturbation in the total radiation energy density corresponding to Eq. (42) by
integrating this equation over frequency and making use of Eqs. (10) and (45),
Z 1

0
dWðm; dT; dNÞdm ¼ 3kðdTN þ TdNÞ: ð47Þ
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Just as the Wien distribution is an equilibrium solution of Eq. (1) for any value of the material temperature, Eq. (42) is an
equilibrium solution of the linearized Fokker–Planck equation for any value of dT. To determine the correct equilibrium
material-temperature perturbation, dTeq, we first integrate Eq. (33) over time in a manner similar to Eq. (13) to write
CvðTÞdTeq þ
Z 1

0
dWðm; dTeq; dNÞdm ¼ CvðTÞdTð0Þ þ

Z 1

0
dEðm; 0Þdm: ð48Þ
Here, dT(0) and dE(m,0) are the initial perturbations in the material temperature and spectral radiation energy density,
respectively, and we have integrated out to a late enough time such that dT and dE are at equilibrium. Then, substituting
Eq. (47) into Eq. (48) gives an expression for dTeq,
CvðTÞdTeq þ 3kðdTeqN þ TdNÞ ¼ CvðTÞdTð0Þ þ
Z 1

0
dEðm; 0Þdm: ð49Þ
This equation could have alternatively been derived by linearizing Eq. (14) directly.
The analysis in subsequent sections is facilitated by defining the following dimensionless transformations:
hm
kT
! x; ð50Þ

kT
mc2 rct ! t; ð51Þ

dEðm; tÞ
hN

! dEðx; tÞ; ð52Þ

dTðtÞ
T
! dTðtÞ; ð53Þ

CvðTÞ
kN

! Cv : ð54Þ
Note that x represents a nondimensional frequency. Using Eqs. (50)–(54) along with Eqs. (2) and (30) allows us to write Eqs.
(29) and (33) as
@

@t
dE ¼ MdEþ dTF; ð55Þ
and
Cv
d
dt

dT þ d
dt

Z 1

0
dEdx ¼ 0; ð56Þ
where it is understood that all quantities are dimensionless. In Eq. (55), M is now the nondimensional Fokker–Planck
operator,
MdE ¼ x2 @2

@x2 dEþ xðx� 2Þ @
@x

dEþ xdE; ð57Þ
and F is the dimensionless version of Eq. (30),
FðxÞ ¼ 1
2

x5 � 4x4	 

e�x: ð58Þ
Also, applying Eqs. (50) and (52) to Eqs. (8) and (41) yields nondimensional forms of these expressions,
WðxÞ ¼ 1
2

x3e�x; ð59Þ
and
VðxÞ ¼ 1
2

x4 � 3x3	 

e�x: ð60Þ
5. Stability analysis

In this section, we perform a stability analysis of the SI, FI, and LI discretizations. The analysis of each scheme consists of
linearizing the corresponding discrete Fokker–Planck equation according to the process described above, then determining
the eigenvalues of the resulting linearized equation. For simplicity, we assume that the time-step size is constant. We first
investigate the stability of the SI discretization. Next, we will see that our linearization procedure leads to identical linearized
equations for the FI and LI schemes, and thus we examine these two time discretizations simultaneously.

5.1. SI discretization

Applying our linearization process to Eq. (15) shows that the linearized version of the SI scheme is
dEnþ1 � dEn

rcDt
¼ MðTÞdEnþ1 þ dTnF: ð61Þ
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Also, linearizing Eq. (16) yields
CvðTÞdTnþ1 þ
Z 1

0
dEnþ1 dm ¼ CvðTÞdTn þ

Z 1

0
dEn dm: ð62Þ
In a manner similar to Eqs. (55) and (56), we can cast Eqs. (61) and (62) into dimensionless form using Eqs. (50)–(54) and
Eqs. (2), (30), (57), and (58) to write
dEnþ1 � dEn

Dt
¼ MdEnþ1 þ dTnF; ð63Þ
and
CvdTnþ1 þ
Z 1

0
dEnþ1 dx ¼ CvdTn þ

Z 1

0
dEn dx: ð64Þ
Note that in Eq. (63) Dt is a nondimensional time-step size analogous to Eq. (51).
We now look for solutions to Eqs. (63) and (64) of the form
dEnðxÞ ¼ xndEðxÞ; ð65Þ
and
dTn ¼ xndT: ð66Þ
Here, dE and dT are the spectral-radiation-energy-density and material-temperature components of an eigenfunction of Eqs.
(63) and (64), while x is the corresponding eigenvalue or amplification factor. The amplification factor provides insight into
the behavior of solutions generated by a particular time discretization as a function of time-step size and other physical
parameters. For example, if jxj > 1, then from Eqs. (65) and (66) the magnitude of the solution can grow without bound
and the time discretization is considered unstable. Conversely, jxj 6 1 is the standard definition of a stable discretization
[10]. Also, if x < 0, then Eqs. (65) and (66) show that the solution can nonphysically oscillate.

When we substitute Eqs. (65) and (66) into Eqs. (63) and (64), we have
½xð1� DtMÞ � 1�dE ¼ DtdTF; ð67Þ
and
ðx� 1Þ CvdT þ
Z 1

0
dEdx

� �
¼ 0: ð68Þ
To continue, we must specify the frequency dependence of dE. In von Neumann analysis [10], the typical method for exam-
ining the stability properties of discretization schemes for partial differential equations, one assumes that the eigenfunctions
are exponentials. However, in our case dE is not an exponential function because M has variable coefficients and the fre-
quency variable does not represent an infinite or periodic domain. Instead, we express the frequency dependence of dE with
an expansion based on the eigenfunctions of M. The eigenvalue problem of interest is then
Myk þ kyk ¼ 0; ð69Þ
where yk(x) is an eigenfunction of M and k is the corresponding eigenvalue. Kompaneets [2] and Pomraning [11] have shown
that the solution to Eq. (69) consists of two discrete eigenfunction–eigenvalue pairs,
y0ðxÞ ¼
1ffiffiffi
2
p x3e�x; k ¼ 0; ð70Þ
and
y2ðxÞ ¼
1ffiffiffi
2
p x3 � 2x2

	 

e�x; k ¼ 2; ð71Þ
and a continuum of eigenfunction–eigenvalue pairs,
ykðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh½paðkÞ�
pkðk� 2Þ

s
x3=2þiaðkÞe�x W½�3=2þ iaðkÞ;1þ 2iaðkÞ; x�; k P 9=4: ð72Þ
Here, W is the confluent hypergeometric function of the second kind [12], a is given by
aðkÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
k� 9

4

r
; ð73Þ
and i ¼
ffiffiffiffiffiffiffi
�1
p

. These eigenfunctions are orthogonal with respect to the weighting function [11]
wðxÞ ¼ ex

x4 : ð74Þ
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Thus, an arbitrary function f(x) may be expanded as
f ¼ c0y0 þ c2y2 þ
Z 1

9=4
ckyk dk; ð75Þ
where the coefficients in this expansion are defined by
c0 ¼
Z 1

0
f ðxÞy0ðxÞwðxÞdx; ð76Þ

c2 ¼
Z 1

0
f ðxÞy2ðxÞwðxÞdx; ð77Þ
and
ck ¼
Z 1

0
f ðxÞykðxÞwðxÞdx: ð78Þ
We will present various moments of Eq. (72) in Appendix B that facilitate calculating integrals of the form given by Eq. (78).
Representing dE using an eigenfunction expansion similar to Eq. (75) yields
dE ¼ a0y0 þ a2y2 þ
Z 1

9=4
akyk dk: ð79Þ
Here, a0, a2, and ak are expansion coefficients that are yet to be determined. Also, we will show in Appendix C that Eq. (58)
can be expanded as
F ¼ b0y0 þ b2y2 þ
Z 1

9=4
bkyk dk; ð80Þ
where the expansion coefficients in this case are [see Eqs. (C.4), (C.5), and (C.7)]
b0 ¼ 0; ð81Þ
b2 ¼

ffiffiffi
2
p

; ð82Þ
and
bk ¼
p
2

k2ðk� 2Þ
cosh½paðkÞ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh½paðkÞ�
pkðk� 2Þ

s
: ð83Þ
Evaluating Eq. (67) with Eqs. (79) and (80) and applying Eqs. (69), (81), and (82) allows us to write
ðx� 1Þa0y0 þ ½xð1þ 2DtÞ � 1�a2y2 þ
Z 1

9=4
½xð1þ kDtÞ � 1�akyk dk ¼ DtdT

ffiffiffi
2
p

y2 þ
Z 1

9=4
bkyk dk

 !
: ð84Þ
By inspecting Eq. (84) and using the fact that Eqs. (70)–(72) are orthogonal, we see that a0, a2, and ak must satisfy
½x� 1�a0 ¼ 0; ð85Þ
½xð1þ 2DtÞ � 1�a2 ¼

ffiffiffi
2
p

DtdT; ð86Þ
and
½xð1þ kDtÞ � 1�ak ¼ bkDtdT: ð87Þ
In addition, substituting Eq. (79) into Eq. (68) gives
ðx� 1Þ CvdT þ
Z 1

0
a0y0 þ a2y2 þ

Z 1

9=4
akyk dk

 !
dx

" #
¼ 0: ð88Þ
We can simplify this expression by first integrating Eqs. (70)–(72) over frequency,
Z 1

0
y0 dx ¼ 3

ffiffiffi
2
p

; ð89ÞZ 1

0
y2 dx ¼

ffiffiffi
2
p

; ð90Þ
and
Z 1

0
yk dx ¼ pkðk� 2Þ

cosh½paðkÞ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh½paðkÞ�
pkðk� 2Þ

s
¼ 2

k
bk: ð91Þ
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Note that we have employed Eqs. (83) and (B.11) to write Eq. (91). Then, combining Eqs. (88)–(91) reveals
ðx� 1Þ CvdT þ 3
ffiffiffi
2
p

a0 þ
ffiffiffi
2
p

a2 þ
Z 1

9=4

2
k

bkak dk

" #
¼ 0: ð92Þ
We are now in a position to calculate valid amplification factors using Eqs. (85)–(87) and (92). The naive approach at this
point would be to solve Eqs. (85)–(87) for a0, a2, and ak, then evaluate Eq. (92) with these coefficients to develop a charac-
teristic equation for x. However, we cannot simply divide Eqs. (85)–(87) by the bracketed terms on their left sides as these
quantities are possibly zero, a situation that leads to singular expansion coefficients. For example, Eqs. (85) and (86) show
that there are discrete singularities at x = 1 and x = x1, where
x1 ¼
1

1þ 2Dt
: ð93Þ
Also, because k varies between 9/4 and infinity, we see from Eq. (87) that there is a continuum of singularities for 0 < x 6x2,
where
x2 ¼
1

1þ 9
4 Dt

: ð94Þ
Instead, we look for valid amplification factors in the following three regions separately:

(1) x = 1: We will demonstrate that this value of the amplification factor corresponds to an equilibrium solution of Eqs.
(63) and (64).

(2) 0 < x 6x2: We will show that this case represents a continuum of amplification factors.
(3) x 6 0 or x > x2,x – 1: In this region, we will develop a characteristic equation for x that can predict the behavior of

solutions generated by the SI discretization.

Note that we only consider real values of x. We will prove that there are no complex amplification factors in Appendix D.

5.1.1. x = 1
For this value of x, Eq. (92) is always satisfied. In addition, Eq. (85) implies that a0 is arbitrary, while directly solving Eqs.

(86) and (87) yields
a2 ¼
1ffiffiffi
2
p dT; ð95Þ
and
ak ¼
bk

k
dT; ð96Þ
When we substitute Eqs. (95) and (96) into Eq. (79) and make use of Eq. (83), we have
dE ¼ a0y0 þ dT
1ffiffiffi
2
p y2 þ

p
2

Z 1

9=4

kðk� 2Þ
cosh½paðkÞ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh½paðkÞ�
pkðk� 2Þ

s
yk dk

( )
; ð97Þ
where dT is also arbitrary. The term in braces on the right side of Eq. (97) is simply an eigenfunction expansion of Eq. (60), an
expression we present in Appendix C as
V ¼ f0y0 þ f2y2 þ
Z 1

9=4
fkyk dk; ð98Þ
with expansion coefficients given by [see Eqs. (C.9), (C.10), and (C.12)]
f0 ¼ 0; ð99Þ

f2 ¼
1ffiffiffi
2
p ; ð100Þ
and
fk ¼
p
2

kðk� 2Þ
cosh½paðkÞ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh½paðkÞ�
pkðk� 2Þ

s
: ð101Þ
In addition, we note that Eqs. (59) and (70) are directly proportional to each other,
y0 ¼
ffiffiffi
2
p

W: ð102Þ
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Thus, we can evaluate Eq. (97) using Eqs. (98)–(102) to write
dE ¼
ffiffiffi
2
p

a0W þ dTV : ð103Þ
Eq. (103) and x = 1 represent an equilibrium solution of Eqs. (63) and (64). We refer to this solution as an equilibrium
solution because, in the ideal situation where all other amplification factors are less than unity in magnitude and the SI dis-
cretization is stable, Eqs. (65) and (66) show that this solution is constant and the only solution that persists after many time
steps. Obviously, this equilibrium solution cannot display instabilities or nonphysical oscillations. Also, we note that
Eq. (103) is a linear combination of Eqs. (59) and (60). Thus, we can view this expression as a dimensionless version of
Eq. (42), the equilibrium solution of the linearized Fokker–Planck equation. The presence of the unspecified coefficients
a0 and dT in Eq. (103) is due to the fact that the magnitude of an eigenfunction is arbitrary. However, we could calculate these
coefficients by imposing energy and photon conservation.

5.1.2. 0 < x 6x2

In this case, dividing Eqs. (85) and (86) by the bracketed terms on their left sides reveals
a0 ¼ 0; ð104Þ
and
a2 ¼
ffiffiffi
2
p

Dt
xð1þ 2DtÞ � 1

dT: ð105Þ
Unfortunately, we cannot solve Eq. (87) in the same manner as this process would yield a singular expansion coefficient for
every value of x in this region. For a given value of x, the singularity occurs at k = l, where
lðxÞ ¼ 1
Dt

1
x
� 1

� �
: ð106Þ
Instead, we use a generalized solution to Eq. (87) of the form
ak ¼ P
bkDt

xð1þ kDtÞ � 1
dT þ cðxÞd½k� lðxÞ�: ð107Þ
Here, P denotes that the Cauchy principal value is taken under integration, d(z) is the delta function, and c is a function of x
that is yet to be determined. When we substitute Eqs. (104), (105), and (107) into Eq. (84) and apply Eq. (106), we see that
both the singularity and the delta-function dependence vanish, and that these coefficients correspond to a valid eigenfunc-
tion expansion for dE.

To satisfy Eq. (92), we require that the term in brackets on the left side of this expression vanishes,
CvdT þ 3
ffiffiffi
2
p

a0 þ
ffiffiffi
2
p

a2 þ
Z 1

9=4

2
k

bkak dk ¼ 0: ð108Þ
Evaluating Eq. (108) with Eqs. (104), (105), and (107) shows that this requirement is met if
dT Cv þ
2Dt

xð1þ 2DtÞ � 1
þ P

Z 1

9=4

b2
k

k
2Dt

xð1þ kDtÞ � 1
dk

" #
þ 2

lðxÞblðxÞcðxÞ ¼ 0: ð109Þ
We can then solve Eq. (109) for c,
cðxÞ ¼ �dT
Cv þ

2Dt
xð1þ 2DtÞ � 1

þ p
2

P
Z 1

9=4

k2ðk� 2ÞDt
xð1þ kDtÞ � 1

tanh½paðkÞ�
cosh½paðkÞ� dk

plðxÞ½lðxÞ � 2�
coshfpa½lðxÞ�g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinhfpa½lðxÞ�g
plðxÞ½lðxÞ � 2�

s ; ð110Þ
where we have also made use of Eq. (83). Eq. (110), along with Eqs. (104)–(107), enables us to satisfy Eqs. (85)–(87) and (92)
for every value of x in this region. (Note that dT is again arbitrary for reasons discussed above.) Thus, this case represents a
continuum of amplification factors. However, we see from Eq. (94) that these amplification factors are all positive and less
than unity and consequently cannot generate unstable or oscillatory solutions.

5.1.3. x 6 0 or x > x2, x – 1
In this region, Eq. (104) again holds, and if we avoid the discrete singularity at x1, then we can additionally employ Eq.

(105). Also, a direct solution to Eq. (87) yields
ak ¼
bkDt

xð1þ kDtÞ � 1
dT: ð111Þ
In a manner similar to the development of Eq. (109), substituting Eqs. (104), (105), and (111) into Eq. (108) shows that Eq.
(92) is satisfied when
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dT Cv þ
2Dt

xð1þ 2DtÞ � 1
þ
Z 1

9=4

b2
k

k
2Dt

xð1þ kDtÞ � 1
dk

" #
¼ 0: ð112Þ
We can simplify this expression by applying Eq. (83) and dividing through by dT as this quantity is again arbitrary to write
Cv þ
2Dt

xð1þ 2DtÞ � 1
þ p

2

Z 1

9=4

k2ðk� 2ÞDt
xð1þ kDtÞ � 1

tanh½paðkÞ�
cosh½paðkÞ� dk ¼ 0: ð113Þ
Eq. (113) defines a characteristic equation for x,
HðxÞ ¼ 0; ð114Þ
where
HðxÞ ¼ Cv þ
2Dt

xð1þ 2DtÞ � 1
þ p

2

Z 1

9=4

k2ðk� 2ÞDt
xð1þ kDtÞ � 1

tanh½paðkÞ�
cosh½paðkÞ� dk: ð115Þ
Valid amplification factors are roots of the characteristic equation such that they satisfy Eq. (114).
We note that Eq. (115) has the following properties:
lim
x!�1

HðxÞ ¼ Cv > 0; ð116Þ

dH
dx
¼ � 2ð1þ 2DtÞDt

½xð1þ 2DtÞ � 1�2
� p

2

Z 1

9=4

k2ðk� 2Þð1þ kDtÞDt

½xð1þ kDtÞ � 1�2
tanh½paðkÞ�
cosh½paðkÞ� dk < 0: ð117Þ
In addition, by inspecting Eq. (115) we see that H diverges to negative infinity as x approaches x1 from the left and diverges
to positive infinity as x approaches x1 from the right. With these characteristics of H, we can predict the locations of solu-
tions to Eq. (114):

� x 6 0: In this region, H monotonically decreases from its asymptotic value of Cv to H(0). Thus, there is a single root if
H(0) 6 0. Otherwise, there are no roots.

� x2 < x < x1: Here, H monotonically decreases to negative infinity. Thus, there is a single root if H is positive near x2.
Otherwise, there are no roots.

� x1 < x: In this region, H monotonically decreases from positive infinity to its asymptotic value of Cv . Thus, there are no
roots.

Eqs. (93) and (94) show that if there is a root satisfying x2 < x < x1, this root is positive and less than unity and cannot cause
instabilities or nonphysical oscillations. Therefore, only the existence and location of the nonpositive root can predict the
behavior of solutions generated by the SI discretization.

In Fig. 1, we plot an example of H for specific values of Cv and Dt. Note that this function is not defined in the shaded
region (0 < x 6x2) or at x = 1. Although we have depicted a nonpositive root and a root satisfying x2 < x < x1 in this figure,
in reality these roots may or may not exist depending on the values of Cv and Dt.

5.2. FI and LI discretizations

When we apply our linearization process to Eq. (17), we see that the linearized version of the FI scheme is
dEnþ1 � dEn

rcDt
¼ MðTÞdEnþ1 þ dTnþ1F: ð118Þ
Of course, this expression is accompanied by Eq. (62). Note that the only difference between Eqs. (118) and (61), the line-
arized form of the SI discretization, is that the material-temperature perturbation is now evaluated implicitly instead of
explicitly.

We can also determine a linearized version of the LI scheme by employing our linearization procedure with Eq. (20),
dEnþ1 � dEn

rcDt
¼ MðTÞdEnþ1 þ dTnF � 1

CvðTÞ

Z 1

0
ðdEnþ1 � dEnÞdm

� �
@M
@T

W: ð119Þ
In developing the last term on the right side of this equation, we have neglected quantities of second order and higher in dTn

and dEn. To simplify Eq. (119), we first use Eqs. (2), (8), and (30) to write
@M
@T

Wðm; T;NÞ ¼ Fðm; T;NÞ: ð120Þ
Then, substituting Eq. (120) into Eq. (119) gives
dEnþ1 � dEn

rcDt
¼ MðTÞdEnþ1 þ dTn �

1
CvðTÞ

Z 1

0
ðdEnþ1 � dEnÞdm

� �
F: ð121Þ
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Fig. 1. An example of H(x) for the SI discretization.
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In addition, because Eq. (62) is part of this linearized discretization, too, we can evaluate Eq. (121) with this expression to
show
dEnþ1 � dEn

rcDt
¼ MðTÞdEnþ1 þ dTnþ1F: ð122Þ
We see that Eqs. (118) and (122) are identical, and the FI and LI schemes have the same linearized forms. Thus, we examine
that stability of these two time discretization simultaneously by considering Eqs. (62), and (118).

Our analysis of the LI and FI schemes is very similar to the investigation of the SI discretization presented above, so for
brevity we only discuss the major details. We begin by using Eqs. (50)–(54) and Eqs. (2), (30), (57), and (58) to cast Eq. (118)
into a dimensionless form,
dEnþ1 � dEn

Dt
¼ MdEnþ1 þ dTnþ1F: ð123Þ
Here, Dt is again a nondimensional time-step size. Next, combining Eqs. (65), (66), and (123) yields
½xð1� DtMÞ � 1�dE ¼ xDtdTF: ð124Þ
If we represent dE and F with eigenfunction expansions given by Eqs. (79) and (80), respectively, Eq. (124) becomes
ðx� 1Þa0y0 þ ½xð1þ 2DtÞ � 1�a2y2 þ
Z 1

9=4
½xð1þ kDtÞ � 1�akyk dk ¼ xDtdT

ffiffiffi
2
p

y2 þ
Z 1

9=4
bkyk dk

 !
; ð125Þ
where we have also made use of Eqs. (69), (81), and (82). Eq. (125) and the orthogonality of Eqs. (70)–(72) show that a0, a2,
and ak in this case must satisfy
½x� 1�a0 ¼ 0; ð126Þ
½xð1þ 2DtÞ � 1�a2 ¼

ffiffiffi
2
p

xDtdT; ð127Þ
and
½xð1þ kDtÞ � 1�ak ¼ bkxDtdT: ð128Þ
In addition, Eq. (92) holds because our stability analysis is based on Eq. (62), as well.
We continue by examining Eqs. (92) and (126)–(128) to calculate valid amplification factors. With these expressions, we

can demonstrate that (i) x = 1 corresponds to an equilibrium solution of Eqs. (62) and (118) that is also given by Eq. (103),
and (ii) 0 < x 6x2 again represents a continuum of amplification factors. Of course, these amplification factors are all
positive and less than unity and thus cannot cause instabilities or nonphysical oscillations. For all other real values of x
(in Appendix D we will prove that there are no complex amplification factors), avoiding the discrete singularity at x1 and
directly solving Eqs. (126)–(128) reveals
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a0 ¼ 0; ð129Þ

a2 ¼
ffiffiffi
2
p

xDt
xð1þ 2DtÞ � 1

dT; ð130Þ
and
ak ¼
bkxDt

xð1þ kDtÞ � 1
dT: ð131Þ
Then, evaluating Eq. (108) with Eqs. (129)–(131), dividing through by dT, and applying Eq. (83) shows that Eq. (92) is satisfied
when
Cv þ
2xDt

xð1þ 2DtÞ � 1
þ p

2

Z 1

9=4

k2ðk� 2ÞxDt
xð1þ kDtÞ � 1

tanh½paðkÞ�
cosh½paðkÞ� dk ¼ 0: ð132Þ
Eq. (132) defines a characteristic equation for x of the form given by Eq. (114), where H in this case is
HðxÞ ¼ Cv þ
2xDt

xð1þ 2DtÞ � 1
þ p

2

Z 1

9=4

k2ðk� 2ÞxDt
xð1þ kDtÞ � 1

tanh½paðkÞ�
cosh½paðkÞ� dk: ð133Þ
Properties of Eq. (133) include
lim
x!�1

HðxÞ ¼ Cv þ
2Dt

1þ 2Dt
þ p

2

Z 1

9=4

k2ðk� 2ÞDt
1þ kDt

tanh½paðkÞ�
cosh½paðkÞ� dk > Cv ; ð134Þ

dH
dx
¼ � 2Dt

½xð1þ 2DtÞ � 1�2
� p

2

Z 1

9=4

k2ðk� 2ÞDt

½xð1þ kDtÞ � 1�2
tanh½paðkÞ�
cosh½paðkÞ� dk < 0; ð135Þ
and
Hð0Þ ¼ Cv > 0: ð136Þ
In addition, we see from Eq. (133) that H diverges to negative infinity as x approaches x1 from the left and diverges to po-
sitive infinity as x approaches x1 from the right. Using these attributes of H allows us to determine where the roots of the
characteristic equation are located:

� x 6 0: In this region, H monotonically decreases from its asymptotic value to Cv. Thus, there are no roots.
� x2 < x < x1: Here, H monotonically decreases to negative infinity. Thus, there is a single root if H is positive near x2.

Otherwise, there are no roots.
� x1 < x: In this region, H monotonically decreases from positive infinity to its asymptotic value. Thus, there are no roots.
ω2 ω1
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Η(ω)

ω
1

Fig. 2. An example of H(x) for the FI and LI discretizations.
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If there is a root satisfying x2 < x < x1, Eqs. (93) and (94) show that it is positive and less than unity. We conclude that there
are no amplification factors greater than unity nor any negative amplification factors. Thus, our stability analysis demon-
strates that the FI and LI discretizations are unconditionally stable and cannot generate oscillatory solutions regardless of
time-step size. However, this favorable outcome for the LI scheme foreshadows a limitation of our analysis: while the
linearized forms of both time discretizations are identical, and consequently the results for each are equivalent, our linear-
ization process and therefore our stability analysis as a whole are only accurate near equilibrium (i.e., when the material-
temperature and spectral-radiation-energy-density perturbations are small). As we will see in our numerical examples,
the LI scheme can still yield undesirable behavior when conditions are far from equilibrium, although not of the type
excluded by our analysis nor displayed by the SI discretization.

We plot an example of H in Fig. 2 in the same manner as Fig. 1. Again, we have depicted a single root that may or may not
exist for different values of Cv and Dt.

6. Time-step limits

As discussed in the previous section, only the existence and location of the nonpositive root of Eq. (114) can predict if the
SI scheme will produce solutions that are unstable or nonphysically oscillate. We now use information regarding this char-
acteristic equation to develop time-step limits for the SI discretization that avoid undesirable behavior.

We first present a time-step limit that prevents amplification factors less than negative one and the accompanying insta-
bilities. Because Eqs. (115) and (117) show that H is a monotonically decreasing function of x for x 6 0, we can ensure that
there are no roots of Eq. (114) less than negative one by requiring H be non-negative at this value,
Hð�1ÞP 0: ð137Þ
Evaluating Eq. (137) with Eq. (115) yields
Cv �
Dt

1þ Dt
� p

2

Z 1

9=4

k2ðk� 2ÞDt
2þ kDt

tanh½paðkÞ�
cosh½paðkÞ� dk P 0: ð138Þ
We see that the left side of Eq. (138) is a monotonically decreasing function of Dt,
d
dDt

Cv �
Dt

1þ Dt
� p

2

Z 1

9=4

k2ðk� 2ÞDt
2þ kDt

tanh½paðkÞ�
cosh½paðkÞ� dk

( )
¼ � 1

ð1þ DtÞ2
� p

Z 1

9=4

k2ðk� 2Þ
ð2þ kDtÞ2

tanh½paðkÞ�
cosh½paðkÞ� dk < 0; ð139Þ
and has a minimum value of
lim
Dt!1

Cv �
Dt

1þ Dt
� p

2

Z 1

9=4

k2ðk� 2ÞDt
2þ kDt

tanh½paðkÞ�
cosh½paðkÞ� dk

( )
¼ Cv � 1þ p

2

Z 1

9=4
kðk� 2Þ tanh½paðkÞ�

cosh½paðkÞ� dk

( )
: ð140Þ
We can simplify the right side of Eq. (140) by first noting that Eq. (98) satisfies
Z 1

0
V dx ¼

Z 1

0
f0y0 þ f2y2 þ

Z 1

9=4
fkyk dk

 !
dx

¼ 1þ p
2

Z 1

9=4
kðk� 2Þ tanh½paðkÞ�

cosh½paðkÞ� dk; ð141Þ
where we have made use of Eqs. (90), (91), and (99)–(101). Then, substituting Eq. (141) into Eq. (140) gives
lim
Dt!1

Cv �
Dt

1þ Dt
� p

2

Z 1

9=4

k2ðk� 2ÞDt
2þ kDt

tanh½paðkÞ�
cosh½paðkÞ� dk

( )
¼ Cv �

Z 1

0
V dx: ð142Þ
Next, we integrate Eq. (60) over frequency to show
Z 1

0
VðxÞdx ¼ 1

2

Z 1

0
x4 � 3x3
	 


e�x dx

¼ 3; ð143Þ
an expression that is the nondimensional version of Eq. (45). When we evaluate Eq. (142) with Eq. (143), we have
lim
Dt!1

Cv �
Dt

1þ Dt
� p

2

Z 1

9=4

k2ðk� 2ÞDt
2þ kDt

tanh½paðkÞ�
cosh½paðkÞ� dk

( )
¼ Cv � 3: ð144Þ
Thus, Eq. (138) is satisfied regardless of time-step size if
Cv P 3: ð145Þ
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Casting Eq. (145) into dimensional form via Eq. (54) yields
CvðTÞP 3kN; ð146Þ
or, after applying Eq. (11),
CvðTÞP Cr : ð147Þ

Eq. (147) has the interpretation that, when the material heat capacity is larger than the radiation heat capacity, we can expect
the material temperature to vary slower in time that the spectral radiation energy density, and it is appropriate to explicitly
evaluate the material temperature in the SI scheme. If the inequality in Eq. (147) is not met, we must solve Eq. (138) numer-
ically to determine the corresponding time-step limit. This process is most likely impractical in realistic calculations.

We can develop a more restrictive time-step limit that avoids both unstable and oscillatory solutions by instead prevent-
ing negative amplification factors altogether. Analogous to Eq. (137), we require in this case that H is non-negative at zero,
Hð0ÞP 0: ð148Þ

When we combine Eqs. (115) and (148), we see that
Cv � Dt 2þ p
2

Z 1

9=4
k2ðk� 2Þ tanh½paðkÞ�

cosh½paðkÞ� dk

( )
P 0: ð149Þ
To simplify this expression, we first integrate Eq. (80) over frequency and employ Eqs. (81)–(83), (90), and (91) to show
Z 1

0
F dx ¼

Z 1

0
b0y0 þ b2y2 þ

Z 1

9=4
bkyk dk

 !
dx

¼ 2þ p
2

Z 1

9=4
k2ðk� 2Þ tanh½paðkÞ�

cosh½paðkÞ� dk: ð150Þ
Then, using Eq. (150) allows us to write Eq. (149) as
Cv � Dt
Z 1

0
F dx P 0: ð151Þ
In addition, we note that Eq. (58) satisfies
Z 1

0
FðxÞdx ¼ 1

2

Z 1

0
x5 � 4x4	 


e�x dx

¼ 12: ð152Þ

Eqs. (151) and (152) reveal that the time-step limit in this case is
Dt 6
1

12
Cv : ð153Þ
When we transform Eq. (153) back to dimensional units through Eqs. (51) and (54), we have
Dt 6
1

12
1
rc

mc2

kT
CvðTÞ

kN
: ð154Þ
This time-step limit is simpler and easier to implement than the one represented by Eqs. (138) and (147) as it does not in-
volve solving a nonlinear equation.
7. Numerical results

We now check the validity of our stability analysis and time-step limits with a set of numerical test problems. In these
problems, the (temperature-independent) heat capacity is Cv = 0.1 GJ/keV/cm3, the photon density is N = 6.24 � 1023 cm�3,
and the Thomson opacity is r = 1 cm�1. Evaluating Eq. (11) using this value of the photon density shows that the radiation
heat capacity is Cr = 0.3 GJ/keV/cm3. Thus, for these problem parameters, Eq. (147) indicates that it is possible to generate
unstable solutions with the SI discretization for sufficiently large time-step sizes. We have also examined a set of test prob-
lems that are identical to these problems except the photon density is N = 6.24 � 1022 cm�3, the corresponding radiation
heat capacity is Cr = 0.03 GJ/keV/cm3, and Eq. (147) is satisfied. The results of these calculations confirm that the SI scheme
is indeed unconditionally stable in this regime. However, other than this favorable property of the SI discretization, each time
discretization behaved similarly for both values of the photon density, and for brevity we only discuss the higher-photon-
density problems in this paper.

In the numerical results that follow, we consider two classes of test problems. First, we investigate the behavior of the
linearized versions of the SI, FI, and LI schemes, which corresponds to solving a linear problem described by Eqs. (29) and
(33). Our stability analysis and time-step limits should be directly applicable in this case. We then apply these three time
discretizations to two nonlinear problems represented by Eqs. (1), (3), and (4). This examination serves to ascertain the suit-
ability of our stability analysis and time-step limits for more realistic calculations.
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7.1. Linear problem

Discretizing Eqs. (61) and (62) in frequency allows us to write the linearized version of the SI scheme as
A
dEnþ1

dTnþ1

� �
¼ B

dEn

dTn

� �
: ð155Þ
If G denotes the number of frequency groups, then dEn is a (G � 1) vector of group-centered spectral-radiation-energy-den-
sity-perturbation values and A and B are both [(G + 1) � (G + 1)] matrices. These matrices have the forms
A ¼
I � rcDtMðTÞ 0

Dm CvðTÞ
;

� �
ð156Þ
and
B ¼
I rcDtF

Dm CvðTÞ

� �
; ð157Þ
where I is the (G � G) identity matrix, 0 is a (G � 1) vector of zeros, M(T) is a (G � G) matrix representing the Fokker–Planck
operator discretized over frequency, F is a (G � 1) vector constructed by evaluating Eq. (30) at each group center, and Dm is a
(1 � G) vector of group widths, i.e.,
Dmg ¼ mgþ1=2 � mg�1=2; 1 6 g 6 G: ð158Þ
For more details regarding the frequency-group structure and discretized Fokker–Planck operator, see Appendix A. We can
also express the linearized versions of the FI and LI schemes in a form similar to that of Eq. (155) by applying a frequency
discretization to Eqs. (62) and (118) and redefining the matrices A and B in both cases as
A ¼
I � rcDtMðTÞ �rcDtF

Dm CvðTÞ

� �
; ð159Þ
and
B ¼
I 0

Dm CvðTÞ

� �
: ð160Þ
Note that Eq. (155) can be solved each time step for dEn+1 and dTn+1 through a matrix–vector multiplication,
dEnþ1

dTnþ1

� �
¼ A�1B

dEn

dTn

� �
: ð161Þ
In the specific linear problem we examine, the equilibrium material temperature is T = 1 keV, the initial material-temper-
ature perturbation is dT(0) = 1 keV, and there is no initial perturbation in the spectral radiation energy density (and thus no
photon-density perturbation). From Eq. (49), the corresponding equilibrium material-temperature perturbation is
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dTeq = 0.25 keV. Eqs. (51), (54), and (138) then give the time-step limit required to avoid instabilities as Dt 6 4.84 ns, while
Eq. (154) shows that the time-step limit required to prevent nonphysical oscillations is Dt 6 1.42 ns. To solve this problem
via Eq. (161), we employ 100 frequency groups uniformly spaced from 0 keV to 20 keV.

As an initial check of our stability analysis, we calculate the minimum amplification factor corresponding to a particular
time discretization and time-step size in two different ways and compare the results. First, we equate the smallest eigen-
value of the matrix A�1B to the minimum amplification factor. [Justification for this procedure is given by Eqs. (65), (66),
and (161).] The second way is to use the minimum amplification factor predicted by our theory. For the SI scheme, this quan-
tity is the negative root of the characteristic equation defined by Eqs. (114) and (115), if this root exists, or zero, otherwise.
For the FI and LI schemes, our theory predicts that the minimum amplification factor is always zero. Note that, in both cases,
zero is the infimum of the amplification-factor continuum, which is present regardless of time-step size.

In Fig. 3, we plot the minimum amplification factor determined by each of the two methods described above as a function
of time-step size for the SI discretization. From this figure, we see that our theory agrees extremely well with the smallest
eigenvalue of the matrix A�1B; the two curves lie on top of each except near Dt = 0. We also plot the two time-step limits as
vertical lines in Fig. 3. These time-step limits accurately predict when the amplification factor decreases with increasing
time-step size below zero (oscillatory time-step limit) and negative one (stability time-step limit), respectively.
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We have repeated this calculation for the FI and LI schemes and display the results in Fig. 4. This plot shows that the
smallest eigenvalue of the matrix A�1B is always slightly greater than zero (but less than unity), as predicted by our theory.

We continue by examining the behavior of actual solutions to this linear problem generated by both the SI discretization
and the FI/LI discretization (again note that the FI and LI schemes have the same linearized form). We simulated this problem
using each time discretization out to an elapsed time of 60 ns with time-step sizes of Dt = 1 ns (less than the oscillatory time-
step limit), 3 ns (over twice the oscillatory time-step limit but less than the stability time-step limit), and 6 ns (greater than
the stability time-step limit). The material-temperature perturbation resulting from these calculations is plotted in Figs. 5–7.
From these figures, we see that the SI solution approaches equilibrium without oscillating for Dt = 1 ns, nonphysically
oscillates but eventually reaches equilibrium for Dt = 3 ns, and is unstable for Dt = 6 ns. Comparing these time-step sizes
to the time-step limits shows that the SI discretization behaves as expected in all three cases. In addition, the FI/LI
material-temperature perturbation monotonically decreases towards equilibrium regardless of time-step size, an outcome
that is also predicted by our stability analysis.
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7.2. Nonlinear problems

In the two nonlinear problems we consider, we employ 200 frequency groups logarithmically spaced from 0.02 keV to
2000 keV. Also, to determine the time-step limits for the SI discretization, we first calculate the equilibrium material
temperature through Eqs. (4) and (14). We then use this quantity to both solve Eq. (138), along with Eqs. (51) and (54),
for the stability time-step limit and evaluate Eq. (154) for the oscillatory time-step limit.

The first nonlinear problem we examine has an initial material temperature of 100 keV and an initial spectral radiation en-
ergy density described by a Wien distribution at 1 keV. For these initial conditions, the equilibrium material temperature is
25.75 keV, and the corresponding time-step limits are then Dt 6 0.188 ns to avoid instabilities and Dt 6 0.0552 ns to prevent
nonphysical oscillations. We simulated this problem out to an elapsed time of 6 ns using time-step sizes of Dt = 0.05 ns
(slightly less than the oscillatory time-step limit), 0.15 ns (almost three times the oscillatory time-step limit but less than
the stability time-step limit), 0.2 ns (slightly larger than the stability time-step limit), and 1 ns (approximately five times
the stability time-step limit). The material temperature generated by these calculations is displayed in Figs. 8–11. From Figs.
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8 and 9, we see that the SI solution monotonically decreases for Dt = 0.05 ns and nonphysically oscillates before reaching equi-
librium for Dt = 0.15 ns. Thus, both time-step limits performed as intended in this problem. In addition, Fig. 10 shows that
increasing the time-step size to Dt = 0.2 ns caused the SI scheme to exhibit undamped oscillations and that the calculation
is barely stable. Further increasing the time-step size to Dt = 1 ns precipitated a negative material temperature at the end
of the first time step, and thus we do not present results for the SI discretization in Fig. 11. In contrast, the FI and LI schemes
yielded more physically reasonable solutions that, for the most part, approach equilibrium without oscillating as expected. The
exception to this statement is in Fig. 11, where the LI material temperature slightly undershoots at the end of the first time step.

In the second nonlinear problem, the initial material temperature is 1 keV, while the initial spectral radiation energy den-
sity is characterized by a Gaussian profile,
Eðm; 0Þ ¼
ffiffiffiffi
2
p

r
Nhm
n

e�ðm�hÞ2=2n2

erfcð�h=
ffiffiffi
2
p

nÞ
: ð162Þ
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Fig. 11. First nonlinear problem material temperature for Dt = 1 ns.
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Here, erfc(z) is the complimentary error function [18]. Eq. (162) represents a Gaussian distribution of photons, not radiation
energy, and thus this expression differs slightly from the standard form of the Gaussian function (i.e., there is an extra factor
of frequency). When we substitute Eq. (162) into Eq. (5), we see that the correct photon density is preserved. Also, integrat-
ing Eq. (162) over frequency yields the total radiation energy density corresponding to this expression,
Z 1

0
Eðm;0Þdm ¼ hN hþ n

ffiffiffiffi
2
p

r
e�h2=2n2

erfcð�h=
ffiffiffi
2
p

nÞ

" #
: ð163Þ
We set h = 100 keV and n = 10 keV such that photons are distributed relatively narrowly about a frequency of 100 keV, that is,
more narrowly than a Wien distribution at 100 keV. With these problem parameters, the equilibrium material temperature
is 25.25 keV, and the resulting time-step limits are Dt 6 0.192 ns to prevent instabilities and Dt 6 0.0563 ns to avoid non-
physical oscillations.

We simulated this problem again using time-step sizes of Dt = 0.05, 0.15, 0.2, and 1 ns out to an elapsed time of 6 ns.
These time-step sizes have the same relationships to the time-step limits for the SI discretization as they did in the first
0 1 2 3 4 5 6
0

5

10

15

20

25

30

35

40

Time (ns)

M
at

er
ia

l T
em

pe
ra

tu
re

 (
ke

V
)

SI Discretization
FI Discretization
LI Discretization

Fig. 13. Second nonlinear problem material temperature for Dt = 0.15 ns.
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nonlinear problem. The material temperature calculated by these simulations is plotted in Figs. 12–15. The first two of these
figures show that the SI material temperature monotonically approaches equilibrium for Dt = 0.05 ns and nonphysically
oscillates but eventually reaches equilibrium for Dt = 0.15 ns, both of which are consistent with the stability and oscillatory
time-step limits. In addition, we see from Fig. 14 that the SI solution displays barely damped oscillations for Dt = 0.02 ns. Just
as in the first nonlinear problem, employing a time-step size of Dt = 1 ns caused the SI discretization to generate a negative
material temperature, this time at the end of the second time step. For this reason, there are no SI results in Fig. 15. Also,
Figs. 12–15 show that the LI scheme behaves quite differently for this problem than in the first nonlinear problem, exhibiting
large overshoots in the material temperature at the end of the first time step for all but the smallest time-step size. However,
these overshoots relax after several additional time steps, and the material temperature subsequently reaches its equilib-
rium value. Along with these material-temperature overshoots, we observed that a few frequency groups had negative spec-
tral radiation energy densities. This type of behavior was not seen when using either of the two other time discretizations in
this problem, or any of the time discretizations in the first nonlinear problem. As predicted, the FI solution monotonically
increases towards equilibrium regardless of time-step size.
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Fig. 15. Second nonlinear problem material temperature for Dt = 1 ns.
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In our discussion of the numerical results above, we noted that the LI discretization sometimes displayed undesirable
behavior (undershoots and overshoots in the material temperature, negative values for the spectral radiation energy density)
that is not predicted by our stability analysis. The reason for this is that our analysis is only strictly valid near equilibrium
(i.e., when our linearization process is accurate). Nevertheless, the initial conditions in these two nonlinear problems are far
from equilibrium, and the negative and oscillatory material temperatures generated by the SI scheme were not observed
with either the LI or FI discretizations. In particular, it is essential to avoid negative material temperatures in realistic cal-
culations as they can cause severe difficulties, for example when solving Eq. (4).

8. Conclusions

We have performed a stability analysis of three implicit time discretizations for the Compton-Scattering Fokker–Planck
equation. This analysis shows that the FI and LI schemes are unconditionally stable and cannot generate oscillatory solutions
regardless of time-step size, whereas the SI discretization can suffer from instabilities and nonphysical oscillations for suf-
ficiently large time steps. We have used the results of this analysis to develop two time-step limits for the SI scheme. The first
time-step limit prevents unstable solutions, while the second avoids both instabilities and nonphysical oscillations. Although
this second time-step limit is more restrictive than the first, it is also simpler and easier to calculate.

With a set of numerical examples, we have demonstrated the validity of our stability analysis and time-step limits. In
these test problems, we observed that the LI discretization sometimes exhibited undesirable behavior that was not predicted
by our analysis. However, the unstable and oscillatory solutions and subsequent negative material temperatures that were
generated by the SI scheme were not seen when using the LI discretization, or the FI discretization for that matter.

There are several aspects of our stability analysis that are incomplete. First, we have neglected induced scattering in
our formulation of the Fokker–Planck equation and the resulting time discretizations. We feel justified in ignoring this
effect because, in most problems, induced scattering enhances, but does not dominate, radiation-matter energy coupling.
Thus, our stability analysis and time-step limits should also be useful in calculations that include induced scattering. In
addition, our analysis does not address the effect that frequency discretization has on stability as it is only semi-discrete.
If a coarse frequency-group structure is selected with poorly chosen frequency groups, then our stability analysis and
time-step limits may be completely invalid. However, the semi-discrete Fokker–Planck equation upon which our analysis
is based should accurately model its fully discrete counterpart when a reasonable frequency-group structure is pre-
scribed. In this case, our stability analysis and time-step limits should hold. Some evidence for this statement is given
by our numerical results, all of which involve a frequency discretization. Extending our analysis to include frequency
discretization and induced scattering, as well as explaining the behavior of the LI scheme in nonlinear problems, remains
as future work.
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Appendix A. Frequency discretization of the Fokker–Planck operator

In this paper, we employ a frequency discretization of the Fokker–Planck operator that is based on a general class of finite
difference schemes given by Larsen et al. [7]. To develop this discretization, we first specify a frequency-group structure con-
sisting of G groups with group edges m1/2 < m3/2 < � � � < mG+1/2. We also use group centers defined as group-edge averages,
mg ¼
mg�1=2 þ mgþ1=2

2
; 1 6 g 6 G; ðA:1Þ
although alternate prescriptions are possible. Next, we write Eq. (2) as
MðTÞE ¼ m
@

@m
m

kT
mc2

@E
@m
þ hm

mc2 � 3
kT

mc2

� �
E

� �

¼ m
@

@m
kT

mc2 m4e�hm=kT @

@m
m�3ehm=kT E
	 
� �

¼ m
@

@m
hm4

mc2

@

@ehm=kT
m�3ehm=kT E
	 
� �

: ðA:2Þ
The second expression on the right side of Eq. (A.2) corresponds to the first differencing method described by Larsen et al. [7],
while the third expression is used in their second differencing method. We will base our frequency discretization upon this
third expression and second method. Then, applying a straightforward finite difference in frequency to the third expression
in Eq. (A.2) yields the discretized Fokker–Planck operator,
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½MðTÞE�g ¼ mg
Sgþ1=2 � Sg�1=2

mgþ1=2 � mg�1=2
; 1 6 g 6 G; ðA:3Þ
where
Sgþ1=2 ¼
0; g ¼ 0 or g ¼ G;
hm4

gþ1=2

mc2

m�3
gþ1ehmgþ1=kT Egþ1 � m�3

g ehmg=kT Eg

ehmgþ1=kT � ehmg=kT
; 1 6 g 6 G� 1;

8<
: ðA:4Þ
and Eg is the group-centered value of the spectral radiation energy density. Eqs. (A.3) and (A.4) form a tridiagonal system of G
equations for Eg. Note that Eq. (A.4) imposes boundary conditions for g = 0 and g = G by assuming Eg and its frequency derivative
vanish at m1/2 and mG+1/2. This assumption requires that m1/2 is chosen sufficiently small and mG+1/2 is chosen sufficiently large.

Appendix B. Moments of yk

In this appendix, we calculate moments corresponding to Eq. (72) of the form
Z 1

0
xmykðxÞdx ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh½paðkÞ�
pkðk� 2Þ

s Z 1

0
xmþ3=2þiaðkÞe�xW½�3=2þ iaðkÞ;1þ 2iaðkÞ; x�dx: ðB:1Þ
We specifically consider the cases of m = 1, 0, and �1. To perform this integration, we note that W satisfies [19]
Z 1

0
xbþiae�xWð�3=2þ ia;1þ 2ia; xÞdx ¼ Cðbþ 1þ iaÞCðbþ 1� iaÞ

Cðb� 1=2Þ : ðB:2Þ
Here, C is the gamma function and has the following properties [18]:
Cðzþ 1Þ ¼ zCðzÞ; ðB:3Þ
Cð1=2þ izÞCð1=2� izÞ ¼ p

coshðpzÞ ; ðB:4Þ

1
Cð1Þ ¼

1
Cð2Þ ¼ 1; ðB:5Þ

1
Cð0Þ ¼ 0: ðB:6Þ
Using Eqs. (73) and (B.2)–(B.6) allows us to write
Z 1

0
x5=2þiaðkÞe�xW½�3=2þ iaðkÞ;1þ 2iaðkÞ; x�dx ¼ pkðkþ 4Þðk� 2Þ

cosh½paðkÞ� ; ðB:7ÞZ 1

0
x3=2þiaðkÞe�xW½�3=2þ iaðkÞ;1þ 2iaðkÞ; x�dx ¼ pkðk� 2Þ

cosh½paðkÞ� ; ðB:8Þ
and
 Z 1

0
x1=2þiaðkÞe�xW½�3=2þ iaðkÞ;1þ 2iaðkÞ; x�dx ¼ 0: ðB:9Þ
When we substitute Eqs. (B.7)–(B.9) into Eq. (B.1), we have
Z 1

0
xykðxÞdx ¼ pkðkþ 4Þðk� 2Þ

cosh½paðkÞ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh½paðkÞ�
pkðk� 2Þ

s
; ðB:10Þ

Z 1

0
ykðxÞdx ¼ pkðk� 2Þ

cosh½paðkÞ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh½paðkÞ�
pkðk� 2Þ

s
; ðB:11Þ
and Z
 1

0

1
x

ykðxÞdx ¼ 0: ðB:12Þ
Appendix C. Eigenfunction expansions of F and V

We now develop eigenfunction expansions of Eq. (58),
FðxÞ ¼ 1
2

x5 � 4x4	 

e�x; ðC:1Þ
and Eq. (60)
VðxÞ ¼ 1
2

x4 � 3x3	 

e�x; ðC:2Þ
of the form given by Eqs. (75)–(78).
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C.1. Eigenfunction expansion of F

We first determine an eigenfunction expansion of F,
F ¼ b0y0 þ b2y2 þ
Z 1

9=4
bkyk dk: ðC:3Þ
Evaluating Eq. (76) with Eqs. (70), (74), and (C.1) yields
b0 ¼
Z 1

0
FðxÞy0ðxÞwðxÞdx

¼ 1
2
ffiffiffi
2
p

Z 1

0
x4 � 4x3	 


e�x dx

¼ 0: ðC:4Þ
Also, performing the integration in Eq. (77) using Eqs. (71), (74), and (C.1) shows that
b2 ¼
Z 1

0
FðxÞy2ðxÞwðxÞdx

¼ 1
2
ffiffiffi
2
p

Z 1

0
x4 � 6x3 þ 8x2	 


e�x dx

¼
ffiffiffi
2
p

: ðC:5Þ
When we substitute Eqs. (74) and (C.1) into Eq. (78), we have
bk ¼
Z 1

0
FðxÞykðxÞwðxÞdx

¼ 1
2

Z 1

0
ðx� 4ÞykðxÞdx: ðC:6Þ
Applying Eqs. (B.10) and (B.11) to Eq. (C.6) allows us to write
bk ¼
p
2

k2ðk� 2Þ
cosh½paðkÞ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh½paðkÞ�
pkðk� 2Þ

s
: ðC:7Þ
C.2. Eigenfunction expansion of V

Next, we calculate an eigenfunction expansion of V,
V ¼ f0y0 þ f2y2 þ
Z 1

9=4
fkyk dk: ðC:8Þ
When we perform the integration in Eq. (76) with Eqs. (70), (74), and (C.2), we see that
f0 ¼
Z 1

0
VðxÞy0ðxÞwðxÞdx

¼ 1
2
ffiffiffi
2
p

Z 1

0
x3 � 3x2	 


e�x dx

¼ 0: ðC:9Þ
Substituting Eqs. (71), (74), and (C.2) into Eq. (77) yields
f2 ¼
Z 1

0
VðxÞy2ðxÞwðxÞdx

¼ 1
2
ffiffiffi
2
p

Z 1

0
x3 � 5x2 þ 6x
	 


e�x dx

¼ 1ffiffiffi
2
p : ðC:10Þ
We can evaluate Eq. (78) using Eqs. (74) and (C.2) to write
fk ¼
Z 1

0
VðxÞykðxÞwðxÞdx

¼ 1
2

Z 1

0
1� 3

x

� �
ykðxÞdx: ðC:11Þ
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If we make use of Eqs. (B.11) and (B.12), Eq. (C.11) becomes
fk ¼
p
2

kðk� 2Þ
cosh½paðkÞ�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sinh½paðkÞ�
pkðk� 2Þ

s
: ðC:12Þ
Appendix D. A proof that the amplification factors are real

In this appendix, we demonstrate that there are no complex amplification factors associated with either the SI discreti-
zation or the FI and LI discretizations. Our proof consists of first assuming a complex amplification factor does exist, then
showing that this assumption results in a contradiction. We begin by observing that when x is not real, Eq. (92) is satisfied
through Eq. (108),
CvdT þ 3
ffiffiffi
2
p

a0 þ
ffiffiffi
2
p

a2 þ
Z 1

9=4

2
k

bkak dk ¼ 0: ðD:1Þ
Multiplying this expression by the complex conjugate of dT gives
dT	CvdT þ 3
ffiffiffi
2
p

dT	a0 þ
ffiffiffi
2
p

dT	a2 þ
Z 1

9=4

2
k

bkdT	ak dk ¼ 0; ðD:2Þ
where the asterisk denotes a complex conjugate. We can then take the complex conjugate of Eq. (D.2) to write
dTCvdT	 þ 3
ffiffiffi
2
p

dTa	0 þ
ffiffiffi
2
p

dTa	2 þ
Z 1

9=4

2
k

bkdTa	k dk ¼ 0: ðD:3Þ
Here, we have employed the fact that Cv and bk are real [see Eq. (83)]. Subtracting Eq. (D.3) from (D.2) yields
3
ffiffiffi
2
p
ðdT	a0 � dTa	0Þ þ

ffiffiffi
2
p
ðdT	a2 � dTa	2Þ þ

Z 1

9=4

2
k

bkðdT	ak � dTa	kÞdk ¼ 0: ðD:4Þ
For the SI scheme, because x is complex and we avoid the singularities in Eqs. (85)–(87), Eqs. (104), (105), and (111) again
hold,
a0 ¼ 0; ðD:5Þ

a2 ¼
ffiffiffi
2
p

Dt
xð1þ 2DtÞ � 1

dT; ðD:6Þ
and
ak ¼
bkDt

xð1þ kDtÞ � 1
dT: ðD:7Þ
When we multiply Eqs. (D.6) and (D.7) by dT *, we have
dT	a2 ¼
ffiffiffi
2
p

Dt
xð1þ 2DtÞ � 1

jdTj2; ðD:8Þ
and
dT	ak ¼
bkDt

xð1þ kDtÞ � 1
jdTj2: ðD:9Þ
Note that these two expressions are complex only through their dependence on x because Dt and bk are real. The complex
conjugates of Eqs. (D.8) and (D.9) are then
dTa	2 ¼
ffiffiffi
2
p

Dt
x	ð1þ 2DtÞ � 1

jdTj2; ðD:10Þ
and
dTa	k ¼
bkDt

x	ð1þ kDtÞ � 1
jdTj2: ðD:11Þ
Substituting Eqs. (D.5) and (D.8)–(D.11) into Eq. (D.4) reveals
ðx	 �xÞjdTj2 2ð1þ 2DtÞDt

jxð1þ 2DtÞ � 1j2
þ
Z 1

9=4

b2
k

k
2ð1þ kDtÞDt

jxð1þ kDtÞ � 1j2
dk

" #
¼ 0: ðD:12Þ
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Except for the trivial solution where dT = 0, Eq. (D.12) is only satisfied if x = x*, a statement that the amplification factor is
real. However, this fact contradicts our assumption, and we conclude that the SI discretization has no complex amplification
factors.

In the case of the FI and LI schemes, the solutions to Eqs. (126)–(128) when x is complex are once more given by Eqs.
(129)–(131),
a0 ¼ 0; ðD:13Þ

a2 ¼
ffiffiffi
2
p

xDt
xð1þ 2DtÞ � 1

dT; ðD:14Þ
and
ak ¼
bkxDt

xð1þ kDtÞ � 1
dT: ðD:15Þ
Multiplying Eqs. (D.14) and (D.15) by dT * allows us to write
dT	a2 ¼
ffiffiffi
2
p

xDt
xð1þ 2DtÞ � 1

jdTj2; ðD:16Þ
and
dT	ak ¼
bkxDt

xð1þ kDtÞ � 1
jdT2j: ðD:17Þ
In a manner similar to the development of Eqs. (D.10) and (D.11), only the dependence on x can cause Eqs. (D.16) and (D.17)
to be complex, and thus the complex conjugates of these two equations are
dTa	2 ¼
ffiffiffi
2
p

x	Dt
x	ð1þ 2DtÞ � 1

jdTj2; ðD:18Þ
and
dTa	k ¼
bkx	Dt

x	ð1þ kDtÞ � 1
jdT2j: ðD:19Þ
When we evaluate Eq. (D.4) with Eqs. (D.13) and (D.16)–(D.19), we see that
ðx	 �xÞjdTj2 2Dt

jxð1þ 2DtÞ � 1j2
þ
Z 1

9=4

b2
k

k
2Dt

jxð1þ kDtÞ � 1j2
dk

" #
¼ 0: ðD:20Þ
Analogous to Eq. (D.12), this expression implies that x is real and contradicts our assumption. We consequently surmise that
there are no complex amplification factors associated with the FI and LI discretizations, either.
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